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Abstract. We apply the random-phase approximation (RPA) and its extension called renormalized RPA
to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA
frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the
case where the ground state has a broken symmetry, we check the existence of a zero frequency in the
standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA
frequencies are obtained as small oscillations arround the static solution in the time-dependent Hartree-
Bogoliubov equation. We draw the parallel between the two approaches.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 24.10.Cn Many-body theory

1 Introduction

Our understanding of the low-energy behaviour of Quan-
tum Chromodynamics calls for the developement of non-
perturbative methods for quantum field theories. Some
success has been obtained by adapting to relativistic quan-
tum fields well-known non-perturbative methods used
in the nuclear many-body problem. For instance, varia-
tional methods using Gaussian wave functionals (which
are analogous to the Hartree-Fock-Bogoliubov (HFB) kind
of approximations) have been applied to self-interacting
bosonic field theory [1], and to gauge field theory [2]. One
important question, which is currently intensely debated
in the literature, is how do such non-perturbative approx-
imations respect the symmetries of the theory.

In this regard, we would like in the present work to re-
visit this important question within the framework of yet
another well-known and equally successful method from
the many-body theory, the random-phase approximation
(RPA) and its extension, the renormalized RPA [3,4].
The first of these two has been experienced in the past
quite a number of applications in various fields either in
condensed matter or in the nuclear problem. The second
one, on the other hand has, since its first formulation by
Rowe [5], attracted very little interest till very recently.
Besides its use in the conventional nuclear problem, there
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b e-mail: martinc@ipno.in2p3.fr

has been indeed several attempts as of lately to extend its
application to quantum field theoretic models as well [6,7].
It is worth reminding that in the standard RPA, two-body
expectation values are evaluated in the HFB mean-field
vacuum. In the renormalized RPA, however, these two-
body expectation values are determined using the true
RPA vacuum, inferring to the renormalized RPA a self-
consistent character.

Recently, the quasi-particle RPA approach has been
applied to the linear sigma model in order to obtain a
correct description of the global chiral-symmetry-broken
phase. The standard mean-field HFB approximation gives
a finite mass to the pion. However, it has been shown
that in the RPA the pion is massless in accordance with
Goldstone theorem [8,9]. A careful study of the finite-
temperature chiral phase transition in this model reveals,
however, that the HFB-RPA approximation leads to a
first-order phase transition. This clearly is an artefact of
the approximation as it is well admitted that the chiral
transition in this model is of second order. This problem
can be traced back to the fact that the finite-temperature-
induced transition does not happen in the RPA vac-
uum, but rather in the self-consistently built ground state,
namely the HFB state. The latter is clearly a wrong vac-
uum for the theory as it does not possess a valley in the
broken phase. The RPA fluctuations which were crucial
in correcting for these shortcomings [8,9] are of no use in
the present situation, since these are implemented pertur-
batively. Therefore, it is obvious that such an approach is
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bound to fail in describing the theory in the vicinity of
the phase transition. A possible solution to this problem
might very well be in relaxing the quasi-boson approxima-
tion inherent in the standard-RPA approach. This leads
to a self-consistent version of the RPA very difficult to
put in practice. Therefore, it is more convenient to con-
sider rather the renormalized-RPA variant. This is what
we propose to study here.

The renormalized RPA has been considered in [6] in
the context of scalar λφ4 field theory in 1+1 dimensions. In
this work, the formulation of the RPA equations was based
on the Dyson equation approach. A preliminary work ap-
plies the renormalized RPA to O(N) field theory [7]. Here,
we will focus on the two-dimensional quantum anharmonic
oscillator with an O(2) symmetry. This purely quantum-
mechanical model allows to obtain analytical expressions
without the problems of divergences occurring in quantum
field theories. It shows the possibility to have a vacuum
state with spontaneous broken symmetry. It has also the
advantage that we can compare the results obtained with
the standard and renormalized RPAs with exact numeri-
cal results. This numerical investigation shall be published
in a future work. Here we will concentrate on the formal
aspects of the theory. A crucial point is to check the ex-
istence of a zero excitation frequency above the vacuum
state with broken symmetry in our non-perturbative ap-
proximations (this corresponds in quantum field theory
to the Goldstone mode). Since these quantum-mechanical
systems are used for demonstrational purpose, we will dis-
regard all problems related to the infrared divergences oc-
curring due to the presence of this zero-energy mode.

The paper is organized as follows. In the first part,
we derive the renormalized-RPA equations using the
equation-of-motion method [5]. In the second part, we
use a time-dependent approach. In this formalism, the
standard-RPA frequencies are obtained as small oscilla-
tions around the static solution in the time-dependent
Hartree-Bogoliubov equation. Within this second ap-
proach, we are not able to go beyond the standard RPA.
However, it is interesting to draw the parallel between the
two approaches.

2 Renormalized-RPA equations from the
equation-of-motion method

The Hamiltonian for the O(2) anharmonic oscillator reads

H =
P 2

1

2
+
P 2

2

2
+
µ

2
[X2

1 + (X̃2 + s)2]

+g[X2
1 + (X̃2 + s)2]2 + η(X̃2 + s) , (2.1)

where we have considered an explicit (η �= 0) symmetry
breaking and a spontaneous symmetry breaking along the
X2-direction: 〈X2〉 = s,X2 = X̃2 + s. In the µ < 0 case,
the potential has a “Mexican hat” shape.

The case of two particles in a harmonic potential and
coupled by a linear interaction, which is analytically solv-
able, has been considered by the authors of ref. [10] to
demonstrate that the RPA correlation formula works well.

Let us define creation and annihilation operators a†i
and ai, i = 1, 2, according to

X1 =
1√
2ω

(a1 + a†1) , P1 = i

√
ω

2
(a†1 − a1) , (2.2)

X̃2 =
1√
2Ω

(a2 + a†2) , P2 = i

√
Ω

2
(a†2 − a2) . (2.3)

The transverse frequency ω, the radial frequency Ω and
the condensate 〈X2〉 will be determined self-consistently.
Using the analogy with the linear sigma model in quantum
field theory, the X1 and X2 modes represent the pion and
the sigma fields, respectively. In terms of the operators ai

and a†i , the Hamiltonian reads

H =
∑

i=1,2

piia
†
iai +

∑
i=1,2

pi0(a
†
ia

†
i + aiai)

+g11(a
†
1 + a1)4 + g12(a

†
1 + a1)2(a

†
2 + a2)2

+g22(a
†
2 + a2)4 + h12(a

†
1 + a1)2(a

†
2 + a2)

+h22(a
†
2 + a2)3 + η̃(a†2 + a2) + C , (2.4)

where C is the following constant:

C =
ω

4
+
Ω

4
+

µ

4ω
+

µ

4Ω
+
µ

2
〈X2〉2 + 3g

Ω
〈X2〉2

+
g

ω
〈X2〉2 + g 〈X2〉4 + η 〈X2〉 . (2.5)

We have defined the following quantities:

p11 =
ω

2
+

µ

2ω
+

2g
ω

〈X2〉2 , (2.6)

p22 =
Ω

2
+

µ

2Ω
+

6g
Ω

〈X2〉2 , (2.7)

p10 =
1
2
(p11 − ω) , p20 =

1
2
(p22 −Ω) , (2.8)

g11 =
g

4ω2
, g12 =

g

2ωΩ
, g22 =

g

4Ω2
, (2.9)

h12 =
2g
ω

1√
2Ω

〈X2〉 , h22 =
2g
Ω

1√
2Ω

〈X2〉 , (2.10)

η̃ =
1√
2Ω

(
η + µ 〈X2〉+ 4g 〈X2〉3

)
. (2.11)
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2.1 Mean-field equations

Normal ordering with respect to ai and a
†
i gives the result

H =
∑

i=1,2

piia
†
iai +

∑
i=1,2

pi0(a
†
ia

†
i + aiai)

+g11
{
a†1

4 + a4
1 + 6a†1a

†
1a1a1 + 4a†1a

†
1a

†
1a1

+4a†1a1a1a1 + 12a†1a1 + 6a†1a
†
1 + 6a1a1

}
+g22

{
a†2

4 + a4
2 + 6a†2a

†
2a2a2 + 4a†2a

†
2a

†
2a2

+4a†2a2a2a2 + 12a†2a2 + 6a†2a
†
2 + 6a2a2

}
+g12

{
a†1

2a†2
2 + a†1

2a2
2 + a2

1a
†
2
2 + a2

1a
2
2

+2a†1
2a†2a2 + 2a2

1a
†
2a2 + 2a†1a1a

†
2
2 + 4a†1a1a

†
2a2

+a†1
2 + a2

1 + 2a†1a1 + a†2
2 + a2

2 + 2a†2a2

}
+h12

{
a†1

2a†2 + a†1
2a2 + a2

1a
†
2 + a2

1a2 + 2a†1a1a
†
2

}
+2a†1a1a2 + (h12 + 3h22 + η̃)(a2 + a†2) + EHFB ,

(2.12)

where

EHFB =
ω

4
+
Ω

4
+

µ

4ω
+

µ

4Ω

+
(
µ

2
+

3g
Ω

+
g

ω
+ g 〈X2〉2

)
〈X2〉2

+
3g
4ω2

+
3g
4Ω2

+
g

2ωΩ
+ η

〈
X̃2

〉
(2.13)

is the mean-field energy.
Minimization of EHFB with respect to 〈X2〉 gives the

equation for the condensate:

η̃ + 3h22 + h12 = 0 , (2.14)

that is

η + 〈X2〉
[
µ+ 4g 〈X2〉2 + 6g

Ω
+

2g
ω

]
= 0 . (2.15)

Minimization of EHFB with respect to ω and Ω gives the
two gap equations

ω2 = µ+ 4g 〈X2〉2 + 6g
ω

+
2g
Ω

, (2.16)

Ω2 = µ+ 12g 〈X2〉2 + 2g
ω

+
6g
Ω

. (2.17)

We check that the coefficient of the linear term in expres-
sion (2.12) gives the equation for the condensate (2.14).

Equations (2.15)-(2.17) coincide with those written by
Stevenson in [11]. When there is no explicit symmetry
breaking (η = 0), we have two solutions: one with 〈X2〉 =
0 and one where the symmetry is spontaneously broken,

〈X2〉 �= 0. For the symmetric solution, we have ω = Ω and
the gap equation is

ω3 − µω − 8g = 0 . (2.18)

We can compare the mean-field results with exact nu-
merical calculations [12]. For instance, for µ = 1 and
g = 1, the energies of the ground state and the two first-
excited states are in the mean-field approximation: E0 =
1.74015, E1 = 3.90645 and E2 = 6.07275 whereas exact
numerical calculations give E0 = 1.7242, E1 = 3.8304 and
E2 = 6.214. However, we are not aware of numerical cal-
culations for the two-dimensional anharmonic oscillator in
the case 〈X2〉 �= 0.

2.2 RPA equations from the equation-of-motion
method

The symmetry generator, i.e. the angular-momentum op-
erator around the 3-axis, is given by

L3 = X1P2 − (X̃2 + 〈X2〉)P1 , (2.19)

or, in terms of the creation and annihilation operators,

L3 =
i

2

(√
Ω

ω
+

√
ω

Ω

)
(a1a

†
2 − a†1a2)

− i

2

(√
Ω

ω
−

√
ω

Ω

)
(a1a2 − a†1a

†
2)

−i
√
ω

2
〈X2〉 (a†1 − a1) . (2.20)

To derive the RPA equations, we will first use the
equation-of-motion method due to Rowe [5]. We assume
that an exact eigenstate |ν〉 of the Hamiltonian can be cre-
ated from the exact vacuum |0〉 by an excitation operator
Q†

ν :

|ν〉 = Q†
ν |0〉 and Qν |0〉 = 0 . (2.21)

Minimization of the energy Eν = 〈ν|H|ν〉 / 〈ν|ν〉 with re-
spect to a variation δQν of the operator Qν leads to the
following set of equations:〈

0|[δQν , [H,Q†
ν ]]|0

〉
= Ων

〈
0|[δQν , Q

†
ν ]|0

〉
, (2.22)

where Ων = Eν −E0 is the excitation energy. One has also
the supplementary condition

〈0|[H,Qν ]|0〉 = 0 , (2.23)

which is equivalent to generalized mean-field equa-
tions [13].

We will restrict our choice of excitation operators Q†
ν

to those which contain the same operators that appear in
the symmetry generator (2.20), that is

Q†
ν = U (1)

ν a†1 − V (1)
ν a1 + U (2)

ν a†1a
†
2

−V (2)
ν a1a2 + U (3)

ν a1a
†
2 − V (3)

ν a†1a2 . (2.24)
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The RPA ground state is defined by

Qν |RPA〉 = 0 , (2.25)

and the expectation values appearing in eqs. (2.20) and
(2.23) are taken in the RPA ground state. RPA equations
(2.20) become matrix equations which allow to determine
the excitation energy Ων and the amplitudes Uν and Vν :( A B

−B −A
) (Uν

Vν

)
= Ων N

(Uν

Vν

)
, (2.26)

where we have defined the three-dimensional vectors:

Uν =


U

(1)
ν

U
(2)
ν

U
(3)
ν


 , Vν =


V

(1)
ν

V
(2)
ν

V
(3)
ν


 . (2.27)

The norm matrix is given by

N =
(NA NB

NB NA

)
, (2.28)

where the 3× 3 matrices NA and NB are

NA =


1 0 0
0 1 + τ1 + τ2 κ1

0 κ1 τ1 − τ2


 ,

NB =


0 0 0
0 0 −κ2

0 κ2 0


 . (2.29)

We have introduced the notations

κ1=
〈
a†1a

†
1

〉
=〈a1a1〉 , κ2=

〈
a†2a

†
2

〉
=〈a2a2〉 , (2.30)

τ1=
〈
a†1a1

〉
, τ2=

〈
a†2a2

〉
. (2.31)

We have assumed that the previous quantities are real.
We have also used by definition

〈
a†2

〉
= 〈a2〉 = 0.

The RPA basis being complete, we have the follow-
ing expression for any operator O in terms of the RPA
excitation operators Q†

ν and Qν :

O =
∑

ν=1,3

Q†
ν 〈[Qν ,O]〉 −Qν

〈
[Q†

ν ,O]
〉
, (2.32)

where the expectation values are taken on the RPA ground
state. We have therefore the expression of the operators
a†1, a

†
1a

†
2 and a†1a2 in terms of Q†

ν and Qν and we deduce〈
a†1

〉
=

〈
a†1a

†
2

〉
=

〈
a†1a2

〉
= 0 . (2.33)

We will introduce the following quantities:

Γ = τ1 + κ1 + τ2 + κ2 + 1 , (2.34)

∆ = τ1 + κ1 − τ2 − κ2 . (2.35)

An important condition to remember in the EOM ap-
proach for RPA equations is that the norm matrix N has
to be invertible in order to be able to write the normal-
ization condition for the excited state |ν〉.

The matrix elements of A and B are defined according
to

A11 =
〈
[a1, [H, a

†
1]]

〉
, (2.36)

A12 =
〈
[a1, [H, a

†
1a

†
2]]

〉
, (2.37)

A13 =
〈
[a1, [H, a1a

†
2]]

〉
, (2.38)

B11 = −〈[a1, [H, a1]]〉 , (2.39)

B12 = −〈[a1, [H, a1a2]]〉 , (2.40)

B13 = −
〈
[a1, [H, a

†
1a2]]

〉
, (2.41)

A21 =
〈
[a1a2, [H, a

†
1]]

〉
, (2.42)

A22 =
〈
[a1a2, [H, a

†
1a

†
2]]

〉
, (2.43)

A23 =
〈
[a1a2, [H, a1a

†
2]]

〉
, (2.44)

B21 = −〈[a1a2, [H, a1]]〉 , (2.45)

B22 = −〈[a1a2, [H, a1a2]]〉 , (2.46)

B23 = −
〈
[a1a2, [H, a

†
1a2]]

〉
, (2.47)

A31 =
〈
[a†1a2, [H, a

†
1]]

〉
, (2.48)

A32 =
〈
[a†1a2, [H, a

†
1a

†
2]]

〉
, (2.49)

A33 =
〈
[a†1a2, [H, a1a

†
2]]

〉
, (2.50)

B31 = −
〈
[a†1a2, [H, a1]]

〉
, (2.51)

B32 = −
〈
[a†1a2, [H, a1a2]]

〉
, (2.52)

B33 = −
〈
[a†1a2, [H, a

†
1a2]]

〉
. (2.53)

We need to calculate all these commutators. In the
renormalized RPA, when calculating the expectation val-
ues in the RPA ground state, one uses the following ap-
proximation:

〈αiαjαkαl〉 � 〈αiαj〉 〈αkαl〉+ 〈αiαk〉 〈αjαl〉

+ 〈αiαl〉 〈αjαk〉 , (2.54)

where the α operators are either creation or annihilation
operators of the bosons 1 and 2. The expectation values
are calculated self-consistently whereas in standard RPA,
they are calculated in the HFB ground state. We obtain
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the following expressions for the matrix elements of A
and B:

A11 ≡ Eπ = p11 + 12g11(Γ +∆) + 2g12(Γ −∆) , (2.55)

A12 = η̃ + 3h22(Γ −∆) + h12(∆+ 3Γ ) , (2.56)

A13 = 2h12∆, (2.57)

A21 = 2h12Γ , (2.58)

A22 = (Eπ+Eσ)(τ1+τ2+1)+κ1χπ+κ2χσ+4g12Γ 2 , (2.59)

A23 = −κ1(Eπ −Eσ)− (1+ τ1 + τ2)χπ +4g12Γ∆ , (2.60)

A31 = 2h12∆, (2.61)

A32 = κ1(Eπ + Eσ) + (τ1 − τ2)χπ + 4g12Γ∆ , (2.62)

A33 = (τ2−τ1)(Eπ −Eσ)−κ1χπ −κ2χσ+4g12∆2 , (2.63)

B11 ≡ χπ = 2p10 + 2g11(Γ +∆) + 2g12(Γ −∆) , (2.64)

B12 = 2h12Γ , (2.65)

B13 = η̃ + h12(Γ + 3∆) + 3h22(Γ −∆) , (2.66)

B21 = 2h12Γ , (2.67)

B22 = κ1χσ + κ2χπ + 4g12Γ 2 , (2.68)

B23 = −κ2(Eπ − Eσ) + (1 + τ1 + τ2)χσ + 4g12Γ∆ , (2.69)

B31 = 2h12∆, (2.70)

B32 = −κ2(Eπ + Eσ) + (τ1 − τ2)χσ + 4g12Γ∆ , (2.71)

B33 = κ2χπ + κ1χσ + 4g12∆2 . (2.72)

The quantities Eπ, Eσ, χπ and χσ are defined according
to

Eπ =
〈
[a1, [H, a

†
1]]

〉
, (2.73)

Eσ =
〈
[a2, [H, a

†
2]]

〉
, (2.74)

χπ = −〈[a1, [H, a1]]〉 , (2.75)

χσ = −〈[a2, [H, a2]]〉 . (2.76)

The equations for 〈X2〉 and the frequencies ω and Ω
(or for Eπ and Eσ) are, respectively, obtained by writing
the generalized mean-field equations (2.23):

〈[H, a2]〉 = 0 , (2.77)〈
[H, a†1a

†
1]

〉
= 0 , (2.78)

〈
[H, a†2a

†
2]

〉
= 0 . (2.79)

They are equivalent to the minimization of the generalized
mean-field energy 〈H〉 with respect to 〈X2〉, ω and Ω (see
the expression of 〈H〉 eq. (2.130) below). We obtain

η̃ + 3h22(Γ −∆) + h12(Γ +∆) = 0 , (2.80)

p11κ1+p10(2τ1+1)+6g11(Γ+∆)2+g12(Γ+∆)(Γ−∆) = 0 ,
(2.81)

p22κ2+p20(2τ2+1)+g12(Γ+∆)(Γ−∆)+6g22(Γ−∆)2 = 0 .
(2.82)

By using the definitions of p10, p20, Eπ and Eσ, the two last
equations, which we call the generalized gap equations,
can be written as

Eπ(Γ +∆) = ω(2τ1 + 1) , (2.83)
Eσ(Γ −∆) = Ω(2τ2 + 1) . (2.84)

When using the generalized mean-field equations
(2.80), (2.83) and (2.84), we check that the matrices A
and B are symmetric.

2.3 Standard RPA

In the standard RPA, all expectation values are taken in
the HFB ground state. We therefore have: τ1 = τ2 = κ1 =
κ2 = 0 and Γ = 1,∆ = 0. The generalized mean-field
equations (2.80), (2.83) and (2.84) reduce to the mean-
field equations given in sect. (2.1), eqs. (2.15), (2.16) and
(2.17). We have Eπ = ω, Eσ = Ω,χπ = χσ = 0. The
matrices A and B become much simpler:

A =


 ω 2h12 0
2h12 ω +Ω + 4g12 0
0 0 0


 ,

B =


 0 2h12 0
2h12 4g12 0
0 0 0


 , (2.85)

where we have used the equation for 〈X2〉: η̃+3h22+h12 =
0. We note that

A =


ω 0 0
0 ω +Ω 0
0 0 0


+ B . (2.86)

The matrix N is diagonal :

NA =


1 0 0
0 1 0
0 0 0


 , NB =


0 0 0
0 0 0
0 0 0


 .

(2.87)
We see that the amplitudes U (3)

ν and V
(3)
ν , respectively,

in front of the operators a1a
†
2 and a†1a2 in the excitation

operator Q†
ν (2.24) decouple. In the symmetric phase, we

have L3 = i(a1a
†
2−a†1a2) and the operators which decouple

are those which appear in the symmetry generator.
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The standard-RPA equations therefore reduce to a 4×
4 system (instead of 6-by-6). Its dimension will be then
divided by two and the RPA frequencies Ων satisfy

det
[
(A− B) (A+ B)−Ω2

νI
]
= 0 , (2.88)

where now A and B are 2-by-2 matrices and I is the 2-by-2
unity matrix. This gives(

ω2 −Ω2
ν

) (
(ω +Ω)−Ω2

ν + 8g12(ω +Ω)
)

−16h2
12ω(ω +Ω) = 0 . (2.89)

This equation is valid for the two solutions 〈X2〉 = 0 and
〈X2〉 �= 0.

Let us check the existence of a zero RPA frequency
in the case of a ground state with broken symmetry (the
analog of the Goldstone mode in the linear sigma model).
(In the following, we have no explicit symmetry breaking:
η = 0). By introducing the two following quantities (which
correspond to loop integrals in quantum field theories):

Iπ =
1
2ω

, Iσ =
1
2Ω

, (2.90)

the two gap equations in the case 〈X2〉 �= 0 can be written
as

ω2 = 8g(Iπ − Iσ) , (2.91)

Ω2 = 8g 〈X2〉2 . (2.92)

We then introduce the following quantity (which is analog
to the self-energy in quantum field theories):

Σ(Ω2
ν) =

ω +Ω

2ωΩ
1

Ω2
ν − (ω +Ω)2

. (2.93)

Equation (2.89) for the RPA frequencies can be rewritten
as

(
Ω2

ν − ω2
) (

1− 4g
ω +Ω

ωΩ

1
Ω2

ν − (ω +Ω)2

)

−32g2 〈X2〉2 ω +Ω

ωΩ

1
Ω2

ν − (ω +Ω)2
= 0 , (2.94)

or

Ω2
ν − ω2 = 64g2 〈X2〉2 Σ(Ω2

ν)
1− 8gΣ(Ω2

ν)
. (2.95)

This equation is identical to eq. (28) of [6]. We also notice
that

Σ(Ων = 0) = − 1
2ωΩ(ω +Ω)

, (2.96)

Iπ − Iσ =
Ω2 − ω2

2ωΩ(ω +Ω)
. (2.97)

Therefore,

Σ(Ων = 0) =
Iπ − Iσ
ω2 −Ω2

. (2.98)

We then use the gap equation (2.92) to write the equation
for the RPA frequencies (2.95) as

Ω2
ν = ω2 + 8gΩ2 Σ(Ω2

ν)
1− 8gΣ(Ω2

ν)
, (2.99)

and then we use the first gap equation (2.91) to obtain

Ω2
ν =

8g
1− 8gΣ(Ω2

ν)
(Ω2 − ω2)

(
Σ(Ω2

ν)−Σ(Ω2
ν = 0)

)
.

(2.100)
It is clear now that there is a zero frequency in the RPA
spectrum.

2.4 Renormalized RPA

We see from eqs. (2.29) and (2.30) that if κ1 or κ2 are
not vanishing, the norm matrix N is not diagonal. In this
case, it will not always be possible to write normalization
conditions for the excited states |ν〉. We therefore impose
the supplementary conditions

〈
a†1a

†
1

〉
= 〈a1a1〉 = 0 and〈

a†2a
†
2

〉
= 〈a2a2〉 = 0, that is κ1 = 0 and κ2 = 0, i.e. we

neglect pair correlations. With these conditions, the ma-
trix N stays diagonal in the renormalized approximation

N =
(NA 0

0 NA

)
with

NA =


1 0 0
0 1 + τ1 + τ2 0
0 0 τ1 − τ2


 . (2.101)

The matrices A and B simplify:

A =


ω 0 0
0 (ω +Ω)(1 + τ1 + τ2) 0
0 0 (Ω − ω)(τ1 − τ2)


+B ,

(2.102)

B =


 0 2h12Γ 2h12∆
2h12Γ 4g12Γ 2 4g12Γ∆
2h12∆ 4g12Γ∆ 4g12∆2


 . (2.103)

We notice that, contrary to what happen in standard
RPA, the operators a1a

†
2 and a†1a2 do not decouple: the

RPA matrix remains 6-by-6. Its expression is very similar
to standard RPA at finite temperature, τ1 and τ2 being
the occupation numbers [9].

We defined new three-dimensional vectors Ūν and V̄ν

and a new RPA matrix R̄ by( Ūν

V̄ν

)
=N 1/2

(Uν

Vν

)
, R̄=N−1/2

( A B
−B −A

)
N−1/2 .

(2.104)
We have

R̄ =
( Ā B̄
−B̄ −Ā

)
, (2.105)

with Ā = N−1/2
A AN−1/2

A and B̄ = N−1/2
A BN−1/2

A . The
renormalized-RPA equations then write( Ā B̄

−B̄ −Ā
) ( Ūν

V̄ν

)
= Ων

( Ūν

V̄ν

)
, (2.106)

and the RPA frequencies are determined by

det
[(Ā − B̄) (Ā+ B̄) −Ω2

νI
]
= 0 , (2.107)
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I being the 3-by-3 unity matrix. The matrices Ā and B̄
are given by

Ā =


ω 0 0
0 ω +Ω 0
0 0 Ω − ω


 + B̄ , (2.108)

B̄ =


 0 2h12

√
Γ 2h12

√
∆

2h12

√
Γ 4g12Γ 4g12

√
Γ∆

2h12

√
∆ 4g12

√
Γ∆ 4g12∆


 , (2.109)

where Γ = 1 + τ1 + τ2 and ∆ = τ1 − τ2.
The norm of the excited states

〈ν|ν〉 = 〈
0|QνQ

†
ν |0

〉
=

〈
0|[Qν , Q

†
ν ]|0

〉
(2.110)

can be chosen to be equal to one. This corresponds to

(Uν Vν

) (NA 0
0 −NA

)(Uν

Vν

)
= 1 , (2.111)

or ( Ūν V̄ν

) (
I 0
0 −I

)( Ūν

V̄ν

)
= 1 , (2.112)

i.e.

(Ū (1)
ν )2 + (Ū (2)

ν )2 + (Ū (3)
ν )2 − (V̄ (1)

ν )2

− (V̄ (2)
ν )2 − (V̄ (3)

ν )2 = 1 . (2.113)

By replacing the expressions for g12 and h12,
eq. (2.107) can be written in the form

(ω2 − Ω2
ν)

[
1− 4g

(
ω +Ω

ωΩ

Γ

Ω2
ν − (ω +Ω)2

−ω −Ω

ωΩ

∆

Ω2
ν − (ω −Ω)2

)]
=

−32g2 〈X2〉2
[
− ω −Ω

ωΩ

∆

Ω2
ν − (ω −Ω)2

+
ω +Ω

ωΩ

Γ

Ω2
ν − (ω +Ω)2

]
. (2.114)

We introduce the quantity

Σr(Ω2
ν) =

ω +Ω

2ωΩ
1 + τ1 + τ2

Ω2
ν − (ω +Ω)2

− ω −Ω

2ωΩ
τ1 − τ2

Ω2
ν − (ω−Ω)2 ,

(2.115)
which is formally similar to the self-energy operator in
quantum field theories at finite temperature. Equation
(2.114) then becomes

Ω2
ν = ω2 + 64g2 〈X2〉2 Σr(Ω2

ν)
1− 8gΣr(Ω2

ν)
. (2.116)

This equation for the RPA frequencies Ων has the same
form as in standard RPA (eq. (2.95)) but, in renormalized
RPA, Σr contains the densities τ1 and τ2 which have to
be determined self-consistently.

Proceeding in the same way as in standard RPA,
let us check the existence of a zero frequency in renor-
malized RPA in the case 〈X2〉 �= 0. We first introduce

Iπ = (2τ1 + 1)/2ω and Iσ = (2τ2 + 1)/2Ω. The equation
for the condensate and the two generalized gap equations
have then the same form as in standard RPA:

µ+ 4g 〈X2〉2 + 4gIπ + 12gIσ = 0 , (2.117)

ω2 = µ+ 4g 〈X2〉2 + 12gIπ + 4gIσ , (2.118)

Ω2 = µ+ 12g 〈X2〉2 + 4gIπ + 12Iσ , (2.119)

and we have again

ω2 = 8g(Iπ − Iσ) , (2.120)

Ω2 = 8g 〈X2〉2 . (2.121)

We have

Σr(Ω2
ν = 0) = − 1

2ωΩ
1 + τ1 + τ2
(ω +Ω)

+
1

2ωΩ
τ1 − τ2
(ω −Ω)

(2.122)
or

Σr(Ω2
ν = 0) =

Iπ − Iσ
ω2 −Ω2

. (2.123)

Using the two eqs. (2.120) and (2.121), we obtain the same
expression as in standard RPA with Σ replaced by Σr:

Ω2
ν =

8g
1− 8gΣr(Ω2

ν)
(Ω2 − ω2)

(
Σr(Ω2

ν)−Σr(Ω2
ν = 0)

)
.

(2.124)
We have therefore proven the existence of a zero fre-

quency in the RPA spectrum in the case where we have
a broken symmetry in standard RPA as well as in renor-
malized RPA. This result is very encouraging to apply
renormalized RPA in the linear sigma model.

The operator associated to the zero mode is Hermitian
and cannot be normalized according to (2.113). It is equal
to the symmetry generator L3. The amplitudes Ū0 and V̄0

for the zero mode are

Ū
(1)
0 = −i

√
ω

2
〈X2〉 , (2.125)

Ū
(2)
0 =

i

2

(√
Ω

ω
−

√
ω

Ω

)√
Γ , (2.126)

Ū
(3)
0 =

i

2

(√
Ω

ω
+

√
ω

Ω

)√
∆ , (2.127)

and Ū0 = V̄0.
In order to obtain a closing of the renormalized-RPA

eigenvalues problem, one needs the expressions of the ex-
pectation values τ1 and τ2 in terms of the RPA amplitudes.
One uses the inversion formula (2.32) and the algebra of
the sp(4) group:

a†1a1 =
1
2

(
[a1a2, a

†
1a

†
2] + [a†1a2, a1a

†
2]− 1

)
, (2.128)

a†2a2 =
1
2

(
[a1a2, a

†
1a

†
2]− [a†1a2, a1a

†
2]− 1

)
. (2.129)

This provides a set of supplementary equations and allows
a closing of the renormalized-RPA eigenvalues problem.
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To be complete, we finally give the expression of the
energy in the renormalized RPA. From the expression of
H with the normal ordered product (2.12), we obtain

〈H〉 = p11(τ1 + κ1) + p22(τ2 + κ2)− ωκ1 −Ωκ2

+12g11(τ1 + κ1)(τ1 + κ1 + 1)
+12g22(τ2 + κ2)(τ2 + κ2 + 1)
+2g12(2(τ1 + κ1)(τ2 + κ2)
+τ1 + κ1 + τ2 + κ2) + EHFB . (2.130)

We have checked that minimization of 〈H〉 with respect
to 〈X2〉 , ω and Ω gives eq. (2.80) for 〈X2〉 and the two
generalized gap equations (2.81) and (2.82).

2.5 Renormalized RPA for the symmetric solution

For the symmetric solution 〈X2〉 = 0, we have ω = Ω, τ1 =
τ2. We still use κ1 = κ2 = 0.

The matrix N is diagonal with a vanishing matrix NB

and

NA =


1 0 0
0 1 + 2τ1 0
0 0 0


 . (2.131)

The renormalised RPA matrix writes

Ā=


ω 0 0
0 2ω 0
0 0 0


+B̄ with B̄=


0 0 0
0 2g

ω2 (1 + 2τ1) 0
0 0 0


 .

(2.132)
For the symmetric solution we therefore obtain a decou-
pling of the amplitudes in front of the operators a1a

†
2 and

a†1a2 in renormalized RPA, contrary to what happens for
the solution with broken symmetry.

The RPA frequencies are the solutions of

(
Ων − ω2

) [
Ω2

ν − 4ω2 − 8g
ω
(1 + 2τ1)

]
= 0 (2.133)

and the generalized gap equation writes

ω2 = µ+
8g
ω
(2τ1 + 1) . (2.134)

We have therefore the RPA frequencies Ω2
ν = ω2 and Ω2

ν =
5ω2 − µ.

3 RPA from the time-dependent formalism

In this second part of our paper, we will derive the RPA
frequencies from the linearization of the time-dependent
Hartree-Bogoliubov (TDHB) equations. This approach
has been introduced in many-body non-relativistic the-
ories [14]. It has also been used in λΦ4 field theory in
ref. [15], where small oscillations in the broken phase lead
to one- and two-meson modes of the theory. In this for-
malism, the natural variables are 〈Xi〉 and 〈Pi〉 (or Φ('x)
and Π('x) in λΦ4 field theory [15]). This formalism is well

adapted to dynamical problems. Some people working on
RPAs use the formalism with the creation and annihila-
tion operators, other use the time-dependent variational
approach. It is interesting to make a close comparison be-
tween the two approaches.

For a two-dimensional system, a Gaussian state at fi-
nite temperature can be described by a vector αa and a
matrix Ξab, a = 1, 2:

αa =
(

x̄a

−ip̄a

)
, Ξab =

(
2Gab −iT ab

−iT ba −2Sab

)
(3.1)

with

x̄a = 〈Xa〉 , p̄a = 〈P a〉 , (3.2)

Gab =
〈
X̃aX̃b

〉
, (3.3)

Sab =
〈
P̃ aP̃ b

〉
, (3.4)

T ab =
〈
X̃aP̃ b + P̃ bX̃a

〉
(3.5)

with X̃a = Xa −〈Xa〉 and P̃ a = P a −〈P a〉. The matrices
G and S are symmetric.

At zero temperature, we have only two independent
matrices among G, T and S. The state can be described by
a Gaussian wave function parameterized by '̄x, '̄p,G and Σ:

ψ(X1,X2, t) =
1
N exp

(
−

〈
'X − '̄x| 1

4G
+ iΣ| 'X − '̄x

〉)

× exp
(
i
〈
'̄p| 'X − '̄x

〉)
, (3.6)

where the matrix Σ is related to the preceding matrices by

T ab = 2(GΣ +ΣG)ab , (3.7)

Sab =
1
4
(G−1)ab + 4(ΣGΣ)ab . (3.8)

If we work with the operators ai, a
†
i , as is more usual in

many-body problems, one introduces the matrix ρ defined
by

(1+2ρ)ij =




〈
ãiã

†
j + ã†j ãi

〉
−2 〈ãiãj〉

2
〈
ã†i ã

†
j

〉
−

〈
ã†i ãj + ãj ã

†
i

〉

 . (3.9)

The link with the representation with operators ai, a
†
i

and the representation with Xi, Pi is given by the matrix
relation

Ξ ′ =
1
2
(1 + τ)(1 + 2ρ)(1 + τ) , (3.10)

where

τ =
(

0 I
−I 0

)
, (3.11)

I being the 2-by-2 matrix and

see eq. (3.12) on the next page

with ω1 = ω and ω2 = Ω (see eqs. (2.2), (2.3)).
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Ξ ′ =


 2

√
ωi

〈
X̃iX̃j

〉√
ωj −i

√
ωi

〈
X̃iP̃j + P̃jX̃i

〉
1√
ωj

−i
√

ωj

〈
X̃jP̃i + P̃iX̃j

〉
1√
ωi

−2 1√
ωi

〈
P̃iP̃j

〉
1√
ωj


 (3.12)

3.1 The time-dependent Hartree-Bogoliubov equations

In this part of the paper, we will use the following no-
tation for the Hamiltonian of two-dimensional quantum
anharmonic oscillator:

H =
P 2

1

2m
+
P 2

2

2m
+ g(X2

1 +X2
2 − a2)2 . (3.13)

The time-dependent variational Hartree-Bogoliubov
equations are obtained at zero temperature from the min-
imization of

S =
∫

dt 〈ψ|i∂t −H|ψ〉 , (3.14)

where |ψ〉 is the state corresponding to the variational
wave function (3.6). At finite temperature, the TDHB
equations are obtained by minimizing [16]

Z(D(t)) = tr(D(t1))−
∫ t1

t0

dt tr
(
dD(t)
dt

+ i[H,D(t)]
)

,

(3.15)
where D(t) is a variational density matrix, chosen to be a
Gaussian and therefore characterized by α and Ξ.

The TDHB equations can be written in the following
compact form [17]:

iα̇ = τw , (3.16)

iΞ̇ = − [(Ξ + τ)H (Ξ − τ)− (Ξ − τ)H (Ξ + τ)] ,
(3.17)

or
iΞ̇ = 2 [Ξ H τ − τ H Ξ] . (3.18)

The vector w and the matrix H are defined by

δ 〈H〉 = w̃a
i δα

a
i − 1

2
tr

(Hab
ij δΞ

ba
ji

)
. (3.19)

For the Hamiltonian (3.13), we have

〈H〉 = 1
2m

(p2
1 + p2

2 + trS)

+gG11(6x̄2
1 + 2x̄2

2 − 2a2 + 3G11 +G22)
+gG22(2x̄2

1 + 6x̄2
2 − 2a2 +G11 + 3G22)

+gG12(8x̄1x̄2 + 4G12) + g(x̄2
1 + x̄2

2 − a2)2. (3.20)

The vector w and the matrix H are given by

w1
2 =

i

m
p̄1 , w2

2 =
i

m
p̄2 , (3.21)

w1
1 = 4gx̄1

(
x̄2

1 + x̄2
2 − a2

)
+ 12gx̄1G

11

+4gx̄1G
22 + 8gx̄2G

12 , (3.22)
w2

1 = 4gx̄2

(
x̄2

1 + x̄2
2 − a2

)
+ 12gx̄2G

22

+4gx̄2G
22 + 8gx̄1G

12 , (3.23)

H11
11 = −6gx̄2

1 − 2gx̄2
2 − 6gG11 − 2gG22 + 2ga2 , (3.24)

H12
11 = −4gx̄1x̄2 − 4gG12 = H21

11 , (3.25)
H22

11 = −6gx̄2
2 − 2gx̄2

1 − 6gG22 − 2gG11 + 2ga2 , (3.26)

Hab
22 ≡ δ 〈H〉

δSba
=

1
2m

δab , (3.27)

Hab
12 ≡ 2i

δ 〈H〉
δT ab

= 0 , Hab
21 ≡ 2i

δ 〈H〉
δT ba

= 0 . (3.28)

3.2 Static solution of the TDHB equations

The static solution of the TDHB equations (3.16) and
(3.18) is given by

w̄ = 0 , (3.29)

Ξ̄ H(ᾱ, Ξ̄) τ − τ H(ᾱ, Ξ̄) Ξ̄ = 0 . (3.30)

Using the rotational invariance we can choose x̄1 = 0 and
from w̄ = 0 we deduce also G12 = 0 (to simplify the
notations we do not use the bar on the matrix elements
of Ξ for the HFB ground state). From w̄ = 0, we deduce
the existence of two solutions. One solution is symmetric
with x̄2 = 0. The other solution shows a broken symmetry
with x̄2 �= 0 and given by

x̄2
2 = a2 −G11 − 3G22 . (3.31)

From eq. (3.30), we deduce

T ab = 0 , (3.32)

S12 = 0 , (3.33)

S11 = 4mgG11(x̄2
2 − a2 + 3G11 +G22) , (3.34)

S22 = 4mgG22(3x̄2
2 − a2 +G11 +G22) . (3.35)

For the symmetric solution, we have

S11 = S22 = 4mg(4G11 − a2) . (3.36)

For the solution with broken symmetry,

S11 = 8gm(G11 −G22)G11 , (3.37)
S22 = 8gmG22x̄2

2 . (3.38)

At zero temperature, we have for the static solution:
T ab = 0 and S11 = 1/4G11, S22 = 1/4G22. Equations
(3.34) and (3.35) give the two gap equations

1
8m

G−2
11 = 2g(x̄2

2 − a2 + 3G11 +G22) , (3.39)

1
8m

G−2
22 = 2g(3x̄2

2 − a2 +G11 +G22) . (3.40)
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By using the identification G11 = 1/2ω and G22 = 1/2Ω,
the previous equations are identical to the mean-field gap
equations obtained in the first part of the paper, (2.16)
and (2.17).

At zero temperature, the symmetric phase is charac-
terized by

x̄2 = 0 , (3.41)

G11 = G22 ,
1
8m

G−2
11 = 2g(4G11 − a2) . (3.42)

The solution with broken symmetry at zero temperature
is characterized by

x̄2
2 = a2 −G11 − 3G22 , (3.43)
1

32m
G−2

11 = g(G11 −G22) , (3.44)

1
32m

G−2
22 = gx̄2

2 . (3.45)

3.3 Small oscillations around the static solution

The linearization of the TDHB equations (3.16) and (3.18)
writes

iδα̇ = δw , (3.46)

iδΞ̇ = 2
[
δΞ H̄ τ − τ H̄ δΞ + Ξ̄ δH τ − τ δH Ξ̄

]
, (3.47)

where H̄ is the matrix H evaluated for the HFB static
solution ᾱ, Ξ̄.

Let us write more explicitly the linearization of
the TDHB equations around the static HFB solution
with broken symmetry characterized by x̄1 = 0, x̄2 �= 0,
G11, G22, S11, S22,p̄1 = p̄2 = 0, G12 = S12 = T ab = 0.
We obtain a differential system with 14 variables:
δx1, δp1, δx2, δp2, δG

11, δG12, δG22, δT 11, δT 12, δT 21, δT 22,
δS11, δS12, δS22:

δẋ1 =
1
m
δp1 , (3.48)

δṗ1 = −8g(G11 −G22)δx1 − 8gx̄2δG
12 , (3.49)

δẋ2 =
1
m
δp2 , (3.50)

δṗ2 = −8gx̄2
2 − 12gx̄2δG

22 , (3.51)

δĠ11 =
1
m
δT 11 , (3.52)

δĠ12 =
1
2m

δT 12 +
1
2m

δT 21 , (3.53)

δĠ22 =
1
m
δT 22 , (3.54)

δṪ 11 = −16g(G11 −G22)δG11 +
2
m
δS11 , (3.55)

δṪ 12 = −16gG11x̄2δx1 − 16g(x̄2
2 +G11)δG12 +

2
m
δS12 ,

(3.56)

δṪ 21 = −16gG22x̄2δx1 − 16gG11δG12 +
2
m
δS12 , (3.57)

δṪ 22 = −16gx̄2
2δG

22 +
2
m
δS22 , (3.58)

δṠ11 = −8g(G11 −G22)δT 11 , (3.59)

δṠ12 = −4g(G11 −G22)δT 12 − 4gx̄2
2δT

21 , (3.60)

δṠ22 = −8gx̄2
2δT

22 , (3.61)

To write these equations, we have used the mean-field
equations for the solution with broken symmetry.

From this differential system of first order, we obtain a
14-by-14 RPA matrix. Coming back to the operator repre-
sentation, with the help of relation (3.10) and its inverse,
this corresponds to the 14 operators we have to include in
the most general form of the excitation operator Q†

ν of the
first part of this paper if we keep only bilinear operators:
a1, a

†
1, a2, a

†
2, a1a1, a

†
1a

†
1, a2a2, a

†
2a

†
2, a1a2, a

†
1a

†
2, a

†
1a2, a1a

†
2

and a†1a1, a
†
2a2. The last two operators appear only at fi-

nite temperature (For the derivation of RPA equations at
finite temperature, see ref. [18]).

The operator L3 allows to separate these operators into
two sectors: the six operators a1, a

†
1, a1a2, a

†
1a

†
2, a

†
1a2, a1a

†
2

corresponding to the “pion” sector and the 8 operators
a2, a

†
2, a1a1, a

†
1a

†
1, a2a2, a

†
2a

†
2, a

†
1a1, a

†
2a2 corresponding to

the “sigma”sector. By using again the correspondence be-
tween the Xi, Pi representation and the a†i , ai represen-
tation, we deduce that the variables in our first-order
differential system which correspond to the “pion” are:
δx̄1, δp̄1, δG

12, δT 12, δT 21, δS12, the other corresponding
to the “sigma” sector. We check indeed that the RPA
matrix, which we call R, can be written in two blocks,
one 6-by-6 corresponding to the “pion” and one 8-by-8
corresponding to the “sigma”, the two sectors being dis-
connected. We can write the first-order differential system
in the form:

δẊ = RδX , (3.62)

where δX̃ = (δx̄1, δp̄1, δG
12, δT 12, δT 21, δS12, δx̄2, δp̄2,

δG11, δG22, δT 11, δT 22, δS11, δS22) and

R =
(Mπ 0

0 Mσ

)
. (3.63)

The 6-by-6 RPA matrix Mπ for the “pion” sector is equal
to

see eq. (3.64) on the next page

and the 8-by-8 RPA matrix Mσ is equal to

see eq. (3.65) on the next page.

We have detMπ = 0. However, before concluding about
the existence of a zero mode associated to the spontaneous
breakdown of the rotational symmetry, we have to elimi-
nate the spurious modes corresponding to invariants of the
TDHB evolution. At zero temperature, this will allow to
reduce the Mπ matrix to a 4-by-4 matrix. This is also the
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Mπ =




0 1
m

0 0 0 0
−8g(G11 − G22) 0 −8gx̄2 0 0 0

0 0 0 1
2m

1
2m

0
−16gG11x̄2 0 −16g(x̄2

2 + G11) 0 0 2
m

−16gG22x̄2 0 −16gG11 0 0 2
m

0 0 0 −4g(G11 − G22) −4gx̄2
2 0




(3.64)

Mσ =




0 1
m

0 0 0 0 0 0
−8gx̄2

2 0 0 −12gx̄2 0 0 0 0
0 0 0 0 1

m
0 0 0

0 0 0 0 0 1
m

0 0
0 0 −16g(G11 − G22) 0 0 0 2

m
0

0 0 0 −16gx̄2
2 0 0 0 2

m

0 0 0 0 −8g(G11 − G22) 0 0 0
0 0 0 0 0 −8gx̄2

2 0 0




(3.65)

dimension we have found in the first section in standard
RPA.

At zero temperature, we have the following condition
to be satisfied to have a pure state:

ρ(ρ+ I) = 0 (3.66)

or
−Ξ ′τΞ ′ = τ , (3.67)

where the matrices ρ and Ξ ′ are given by eqs. (3.9) and
(3.12) and I is the 2-by-2 unity matrix. We linearize
eq. (3.67) around the HFB static solution. This gives the
following conditions:∑

k

GikδT jk − δT ikGkj = 0 , (3.68)

∑
k

δT kiSkj − SikδT kj = 0 , (3.69)

∑
k

GikδSkj + δGikSkj = 0 . (3.70)

Equations (3.68) and (3.69) give, respectively,

G11δT 21 − δT 12G22 = 0 , (3.71)

S22δT 21 − δT 12S11 = 0 . (3.72)

At the minimum at zero temperature, we have S11 =
1/4G11 and S22 = 1/4G22. The two previous conditions
are therefore equivalent. From eq. (3.70), we obtain

δG12 + 4G11G22δS12 = 0 , (3.73)

δG11 + 4(G11)2δS11 = 0 , (3.74)

δG22 + 4(G22)2δS22 = 0 . (3.75)

The first condition is for the “pion” sector and the last
two conditions are for the “sigma”sector.

Coming back to the operator representation, we have

2
√
ωΩ

〈
X̃1X̃2

〉
+

2√
ωΩ

〈
P̃1P̃2

〉
= 2

(〈
a1a

†
2

〉
+

〈
a†1a2

〉)
,

(3.76)

2
√
ω

Ω

〈
X̃1P̃2 + P̃2X̃1

〉
− 2

√
Ω

ω

〈
X̃2P̃1 + P̃1X̃2

〉
=

4
(〈
a1a

†
2

〉
−

〈
a†1a2

〉)
. (3.77)

By using G12 = 〈X̃1X̃2〉, S12 = 〈P̃1P̃2〉, T 12 = 2〈X̃1P̃2〉,
T 21 = 2〈X̃2P̃1〉, and G11 = 1/ω,G22 = 1/Ω for the static
HFB solution, we see that conditions (3.71) and (3.73)
correspond to the decoupling of the operators a1a

†
2, a

†
1a2

we have found in the first section in standard RPA.
For the pion sector, we will therefore consider the fol-

lowing new variables:

δỸ =
(
δx1, δp1, δC = −4G11G22δG12 + δS12,

δD = G11δT 12 +G22δT 21 ,

δE = δG12 +G22δT 12 −G11δT 21 + 4G11G22δS12 ,

δF = δG12 −G22δT 12 +G11δT 21 + 4G11G22δS12
)
.

(3.78)

We have
δẎ = M′

π δY . (3.79)

From the condition to remain in the variational space of
pure Gaussian states we have δE = 0, δF = 0. We there-
fore consider in M′

π the 4-by-4 matrix corresponding to
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the four coordinates δx1, δp1, δC, δD (we notice that there
are non-vanishing matrix elements in the fifth and sixth
columns of M′

π):

M′′
π=




0 1
m 0 0

−8g(G11 −G22) 0 32G11G22gx̄2
1+16(G11G22)2 0

0 0 0 N1

−16((G11)2+(G22)2)gx̄2 0 N2 0


 ,

(3.80)
where

N1 = − 2
m((G11)2 + (G22)2)

[
G11G22(G22 − 2gm)

+ (G11)2(G22 + 2gm) + 2G22gx̄2
2m

]
, (3.81)

N2 = − 2
m(1 + (G11G22)2)

[
G11 +G22 + 32(G11)3G22gm

+32G112
G22gm(G22 + x̄2

2)
]
. (3.82)

We then calculate detM′′
π and, by using the two gap equa-

tions (3.44) and (3.45) for the solution with broken sym-
metry, we obtain

detM′′
π = 0 . (3.83)

At zero temperature, we have therefore checked the ex-
istence of a zero frequency for the solution with broken
symmetry in the standard RPA.

At finite temperature, the condition (3.66) becomes

ρ(ρ+ I) =
1
4
(C − 1)I , (3.84)

where C is called the Heisenberg invariant and is a quan-
tity conserved by the TDHB evolution: Ċ = 0. In our O(2)
model, C has two indices: Cab, a, b = 1, 2. The Heisenberg
invariant is equal to

Cab =
∑

c

4〈X̃aX̃c〉〈P̃ cP̃ b〉

−〈X̃aP̃ c + P̃ cX̃a〉〈X̃cP̃ b + P̃ bX̃c〉 . (3.85)

For the static solution at finite temperature, we have
T ab = 0 and

4G11S11 = C11 , 4G22S22 = C22 . (3.86)

C11 and C22 are related to the occupation numbers for
the bosons 1 and 2 according to 2na + 1 =

√
Caa. Sim-

ilarly to the zero-temperature case, we linearize the con-
dition (3.84) around the static solution characterized by
G11, G22, S11 and S22. It is then convenient to introduce
new variables in the pion sector and we check the existence
of the zero mode.

4 Conclusion

In this paper, we have applied the random-phase approx-
imation and its extension called renormalized RPA to the
quantum anharmonic oscillator with an O(2) symmetry.
The expression for the RPA matrix in renormalized RPA
is formally very similar to the RPA matrix appearing in
standard RPA at finite temperature. We focused on the
existence of a zero mode among the RPA frequencies in
the case where the ground state has a broken symmetry.
This result is encouraging to apply renormalized RPA in
the linear sigma model. We have compared also the ap-
proach with the creation and annihilation operators with
the time-dependent approach and we identify the variables
corresponding to the “pion” sector and those correspond-
ing to the “sigma” sector. The numerical resolution of
the self-consistent renormalized-RPA equations will be the
subject of a next paper, where Hartree-Bogoliubov mean-
field results, standard-RPA results and renormalized-RPA
results will be compared to exact numerical results for the
vacuum energy and the energy of the first-excited states
in the cases of the symmetric solution and the solution
with broken symmetry.

I am grateful to Peter Schuck for very helpful discussions.
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